Vitamin Supplements and Cardiovascular Disease

Howard N. Hodis, M.D. Atherosclerosis Research Unit University of Southern California

Funded by National Institute on Aging R01-AG13860 and R01-AG17160 and Office of Dietary Supplements

Reduction in Coronary Events in Major LDL-C Lowering Clinical Trials

		Risk Reduct	tion (N)		
Study	Overall	Men	Women	Baseline LDL	
		Secondary Prevention			
$4S^1$	34% (4444)	34% (3617)	35% (827)	188 mg/dL	
CARE ²	24% (4159)	20% (3577)	45% (582)	139 mg/dL	
LIPID ³	24% (9014)	26% (7498)	11% (1516)	150 mg/dL	
		Primary Pre	evention evention		
WOS^4	31% (6595)	31% (6595)	n/a	192 mg/dL	

37% (5608)

46% (997)

150 mg/dL

Afcaps⁵

36% (6605)

¹Lancet 1994;344:1383-1389. ²N Engl J Med 1996;335:1001-1009. ³N Engl J Med 1998;339:1349-1357. ⁴N Engl J Med 1995;333:1301-1307. ⁵ JAMA 1998;279:1615-1622.

Therapies Beyond LDL-C

- Triglyceride-rich lipoprotein reduction
- **→** HDL-C elevation
- Hormone replacement therapy
- Antioxidant vitamin supplementation
- Homocysteine reduction
- **→** Infection/Inflammation
- → Lp(a) reduction
- → ApoC-III
- Fibrinogen

Epidemiological Studies – Antioxidant Vitamins

	Vitamin E	Vitamin C	B-carotene
NHS	0.54 (0.36-0.82)	0.80 (0.58-1.10)	0.78 (0.59-1.03)
Nonfata	d MI or coronary dea	th	
IWHS	0.38 (0.18-0.80)-diet	1.43 (0.75-2.70)	1.19 (0.67-2.12)
CHD de	eath		
HPFS	0.70 (0.55-0.89)	1.25 (0.91-1.71)	0.71 (0.53-0.86)
Nonfata	l MI, coronary death	or revascularization	
FMC:men	0.68 (0.42-1.11)	1.00 (0.68-1.45)	1.02 (0.70-1.48)
CHD de	eath		
FMC:women	0.35 (0.14-0.88)	0.49 (0.24-0.98)	0.62 (0.30-1.29)
CHD de	eath		
Vitamin C			
BDHSSS	0.80 (0.60-1.30)	CVD death	
WES	0.75 (0.52-1.07)	CHD death	
ACS	1.01	Circulatory disease	death
NHANES	0.66 (0.53-0.82)	CVD death	
B-carotene			
WES	0.84	CHD death	
MHCPS	0.54 (0.34-0.86)	CVD death	

Summary of Antioxidant Vitamin Supplementation Randomized Controlled Event Trials of CVD

				Relative Risk(95% CI)	
Trial	N	Supplement (daily)	Follow-up (years)	Primary CVD Outcome	CVD Mortality
CHAOS	2,002	E-800/400 IU	1.39	0.53(0.34-0.83)*	1.18(0.62-2.27)
GISSI	11,324	E-300 IU	3.5	0.95(0.86-1.05)	1.00(0.88-1.14)
HOPE	9,541	E-400 IU	4.5	1.05(0.95-1.15)	1.05(0.90-1.22)
SPACE	196	E-800 IU	1.42	0.54(0.33-0.89)*	0.61(0.28-1.30)
PPP	4,495	E-300 IU	3.6	1.07(0.74-1.56)	0.86(0.49-1.52)
HPS	20,536	E-600 IU+	5	1.02(0.94-1.11)	1.05(0.95-1.15)
		C-250 mg+			
		ß-carotene-20	mg		

^{*}Signficant

Summary of Antioxidant Vitamin Supplementation 2x2 Randomized Controlled Trials of CVD

CVD Outcome
0.95(0.86-1.05) 0.90(0.82-0.99)
1.05(0.95-1.15) or 0.78(0.70-0.86)
0.94(0.77-1.16) 0.77(0.62-0.95)
250 mg 1.02(0.94-1.11) 20 mg 0.83(0.75-0.91)
2

Summary of Antioxidant Vitamin Supplementation Randomized Controlled Atherosclerosis Imaging Trials

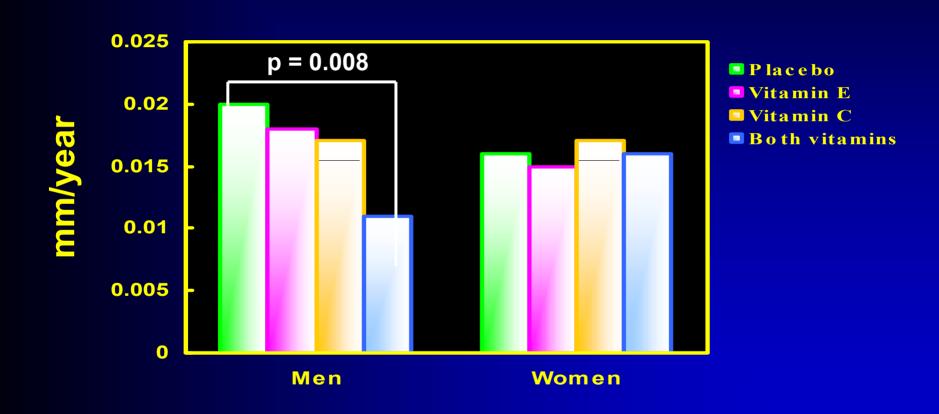
4 RCT's with atherosclerosis progression as the primary outcome

Carotid intima-media thickness by B-mode ultrasonography

Antioxidant Supplementation in Atherosclerosis Prevention Study (ASAP) J Int Med 2000;248:377-386

Study to Evaluate Carotid Ultrasound Changes in Patients Treated with Ramipril and Vitamin E (SECURE)

Circulation 2001;103:919-925


Coronary artery disease by quantitative coronary angiography

HDL Atherosclerosis Treatment Study (HATS)

N Engl J Med 2001;345;1583-1595

Women's Angiographic Vitamin and Estrogen Trial (WAVE) JAMA 2002;288;2432-2440

Antioxidant Supplementation in Atherosclerosis Prevention Study (ASAP)

Summary of Randomized Controlled Trials - Vitamin E

Whether vitamin E supplementation reduces the progression of subclinical atherosclerosis in a healthy cohort of men and women at low-risk for CVD remains untested

Vitamin E Atherosclerosis Prevention Study (VEAPS)

Study Design: randomized, double-blind, placebo-controlled trial

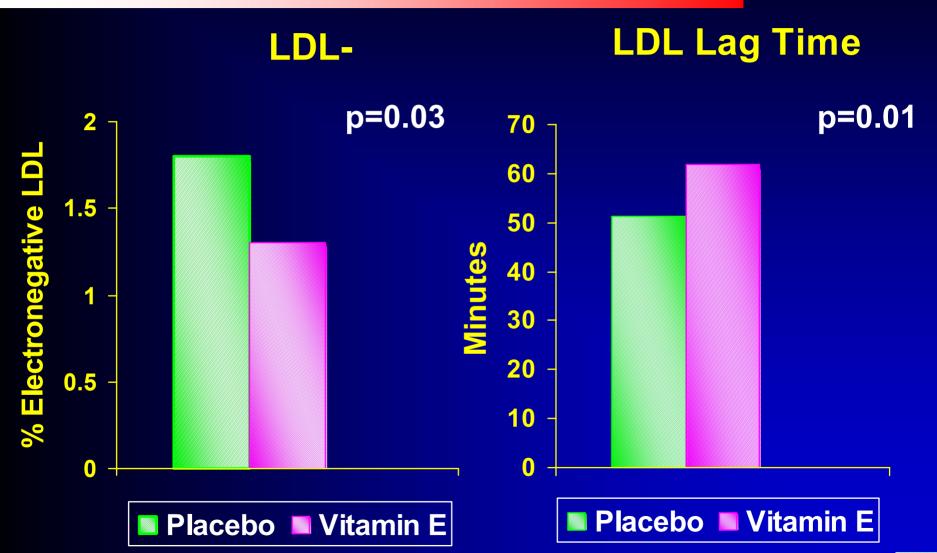
Subjects: 353 healthy men and women ≥40 years old without preexisting CVD

Intervention: 400 IU/day of synthetic DL-α-tocopherol placebo

Follow-up: 3 years

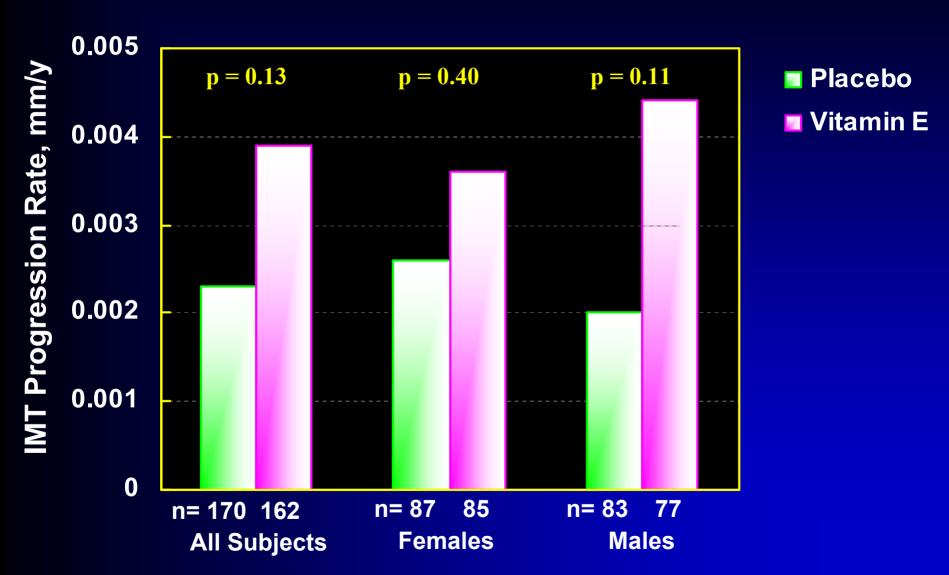
1º outcome:

rate of change of the right distal far wall CCA IMT in computer image processed B-mode ultrasonograms obtained every 6 months



Plasma Vitmain E Levels (µmol/L)

	Placebo (n = 170)	Vitamin E (n = 162)	p-value
Baseline On-trial	23.2 <u>+</u> 6.3 30.9 <u>+</u> 6.2	22.1 <u>+</u> 6.3 53.3 <u>+</u> 12.7	0.16 <0.0001
p-value	<0.0001	<0.0001	

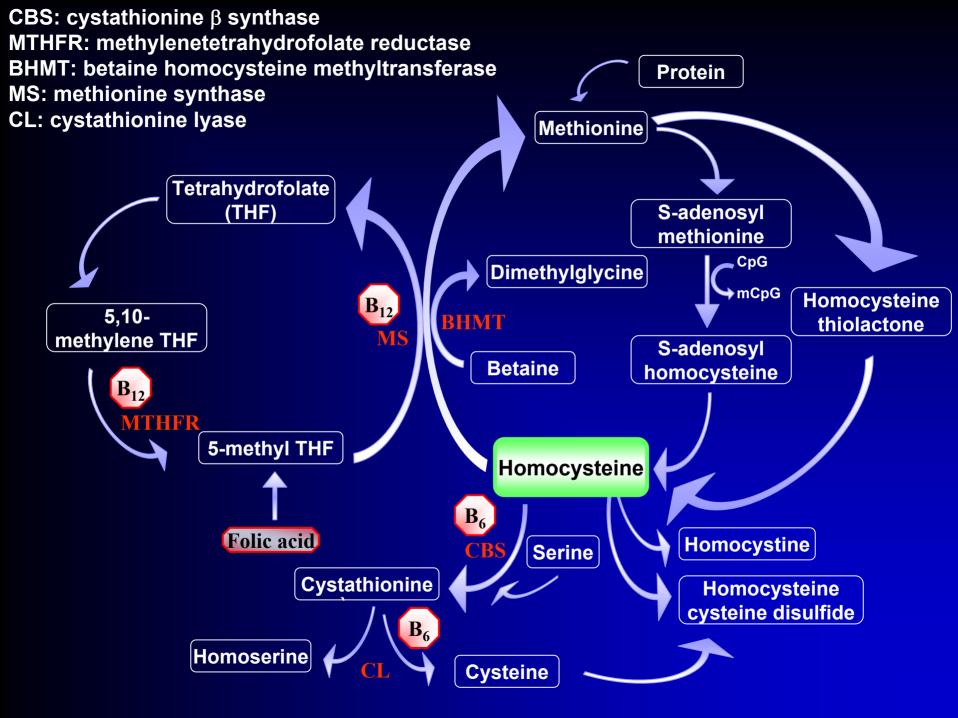


Effect of Vitamin E on LDL Oxidation in VEAPS

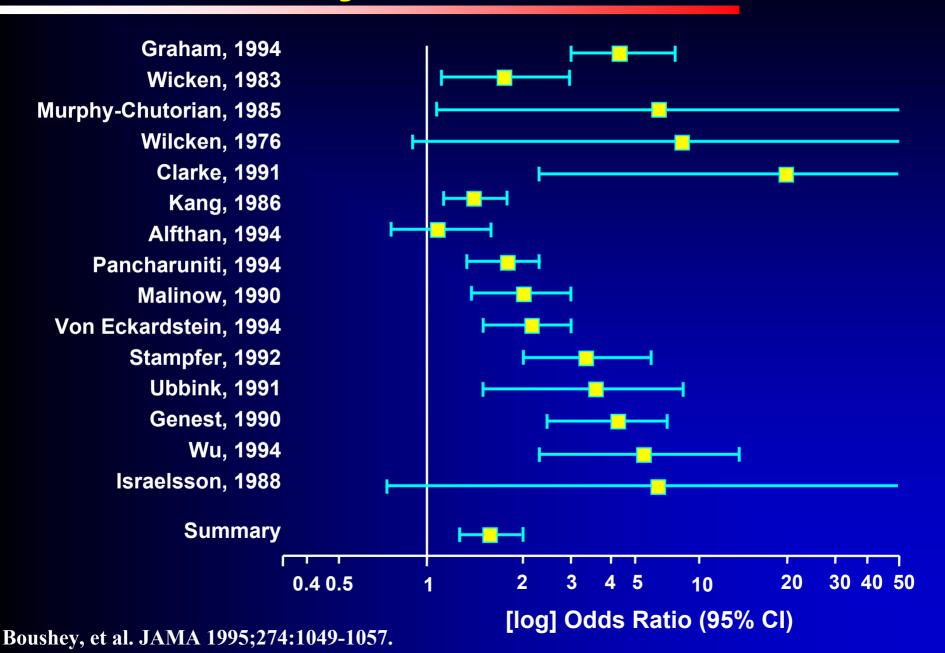
VEAPS Primary Trial Results

Summary

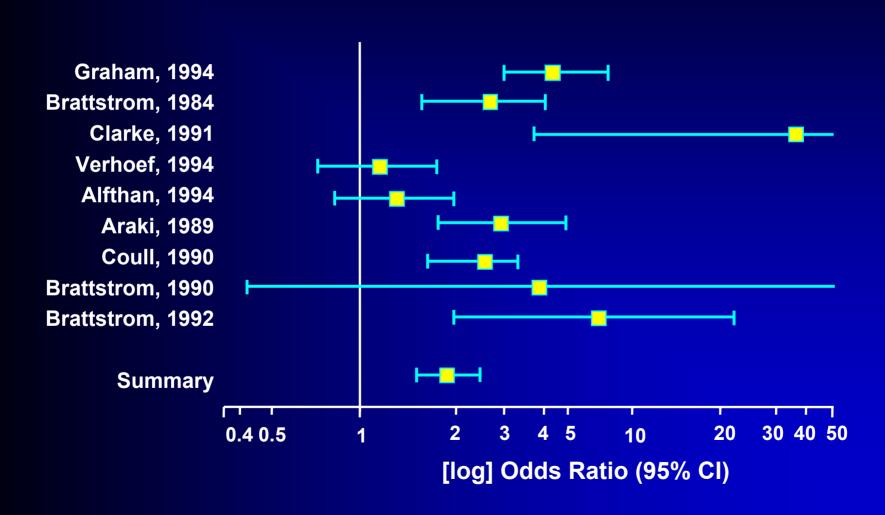
- * Supplementation with DL-α-tocopherol significantly raised plasma vitamin E levels and reduced LDL⁻ and LDL oxidative susceptibility relative to placebo.
- * However, vitamin E supplementation did not reduce the progression of CCA IMT over a 3-year period, overall and stratified by sex.
- Clinically significant side-effects were not observed.

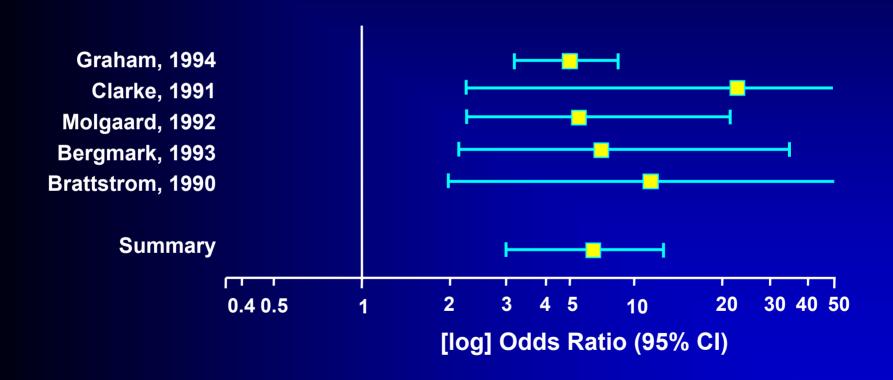

Conclusion

- Use of vitamin E in primary or secondary prevention of CVD for the general population at large is not currently supported by RCT's.
- * VEAPS indicates that in well-nourished healthy vitamin E replete individuals at low risk for CVD, vitamin E supplementation has no perceptible effect on the progression of atherosclerosis.
- * However, the data indicate that special populations, perhaps those with low serum antioxidant vitamin levels may derive CVD benefit from antioxidant vitamin supplementation.



Therapies Beyond LDL-C


- Triglyceride-rich lipoprotein reduction
- **→** HDL-C elevation
- Hormone replacement therapy
- Antioxidant vitamin supplementation
- Homocysteine reduction
- **→** Infection/Inflammation
- → Lp(a) reduction
- → ApoC-III
- Fibrinogen


Homocysteine and CHD

Homocysteine and Cerebrovascular Disease

Homocysteine and Peripheral Vascular Disease

Summary

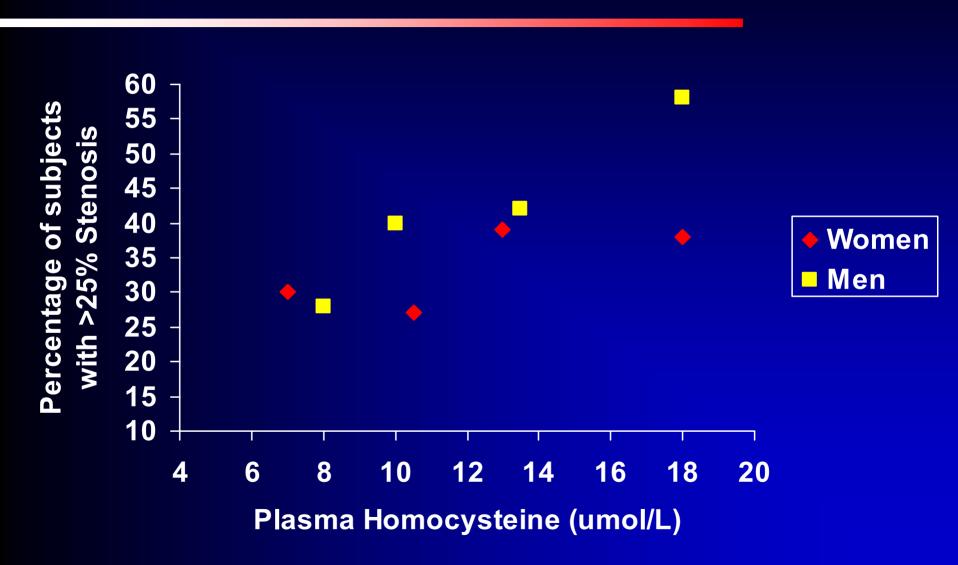
- → Plasma homocysteine is a strong, independent, continuous risk factor for atherosclerotic vascular disease.
- Each 5 μmol/L increase in plasma homocysteine, equal to about 1 SD in the normal population is associated with a 60% increase in risk for CHD in men and an 80% increase in women, and a 90% increase risk for cerebrovascular disease in men and women.
- The CHD risk for each 5 μmol/L increase in homocysteine is equivalent to the effect of a 20 mg/dL rise in plasma cholesterol.

Homocysteine in the Elderly

Plasma homocysteine levels rise approximately 25% after 50 years of age and after 60 years of age there is a progressive rise in homocysteine levels with advancing age in men and women that may partially account for the age-related risk for CVD in the elderly.

The rise in plasma homocysteine levels parallels the age-related decrease in serum levels of folate, vitamin B_6 and vitamin B_{12} .

Several biologic mechanisms associated with aging such as malabsorption can result in reduced serum vitamin levels. However, insufficient dietary intake plays a major role.

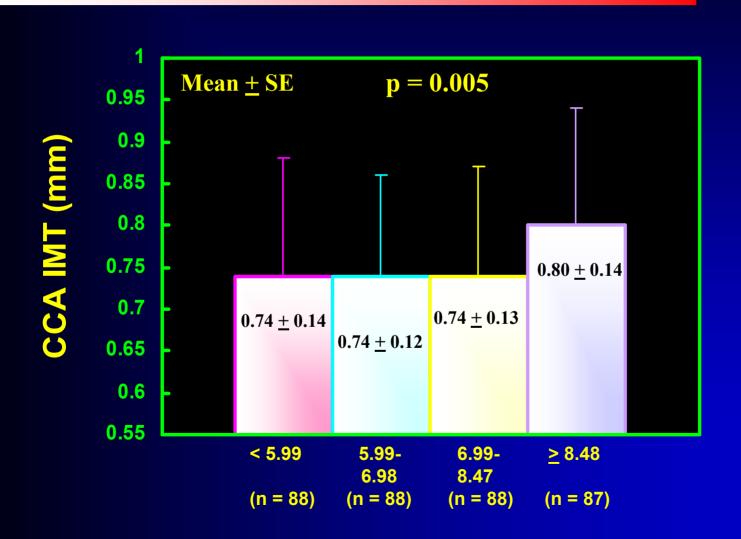

Homocysteine in the Elderly

Data from the Third NHANES indicate the following in individuals >50 years old:

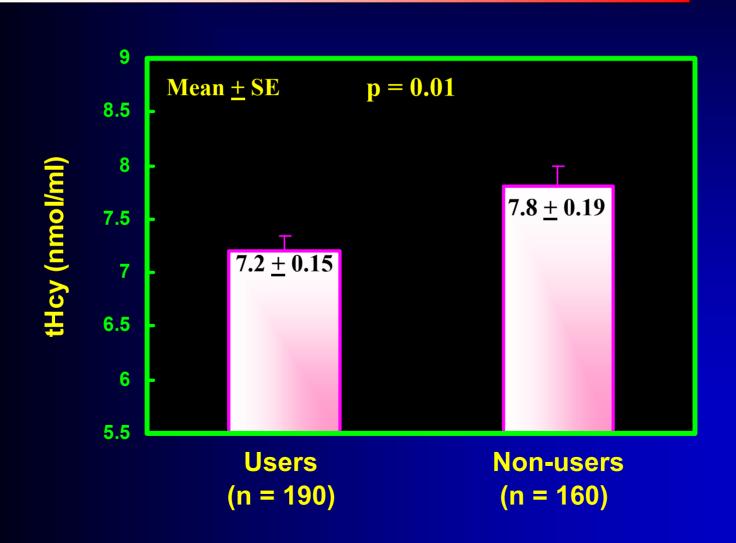
Recommended DV*	% Consumed	% Consumed
	by women	by men
Folate 400 µg	51-58%	62-74%
Vitamin B ₆ 2 mg	63-70%	84-92%
Vitamin B ₁₂ 6 μg	43-49%	62-75%

^{*}Daily Value

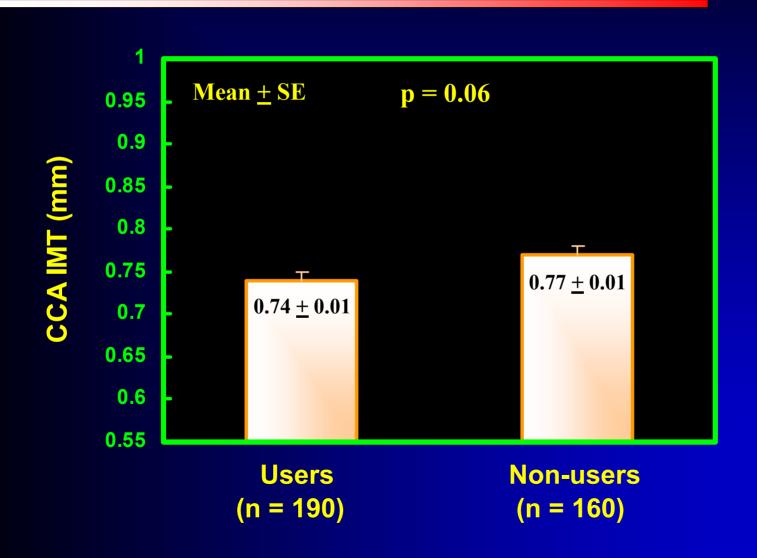
Association between Plasma Homocysteine Concentrations and Carotid Artery Stenosis

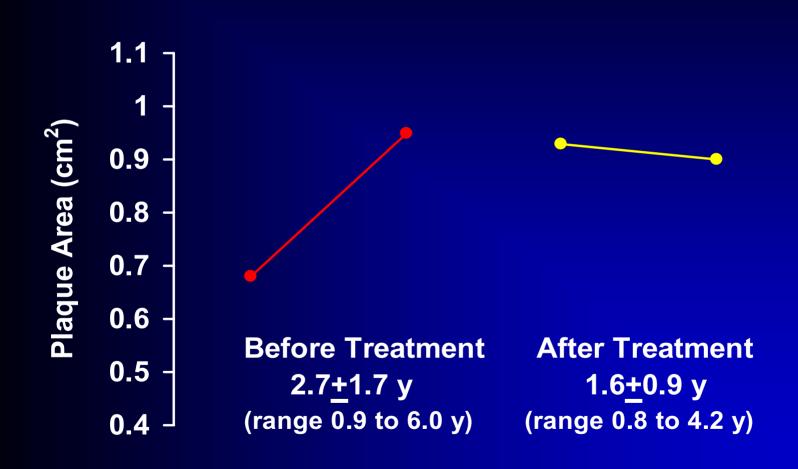


Vitamin E Atherosclerosis Prevention Study (VEAPS)


PLASMA HOMOCYSTEINE LEVELS,
MULTIVITAMINS USE, AND
SUBCLINICAL ATHEROSCLEROSIS

Funded by National Institute on Aging R01-AG13860


CCA IMT by Quartiles of Fasting Total Plasma Homocysteine Levels in VEAPS


Fasting Total Plasma Homocysteine (tHcy) Levels in Current Multivitamin Users vs Non-Users

CCA IMT in Current Multivitamin Users vs Non-Users

Effect of Homocysteine Lowering on Carotid Plaque (n=100)

Effect of Homocysteine Lowering on Coronary Artery Restenosis (6 month follow-up)

Variable	Folate+B ₆ +B ₁₂ (n=121)	Placebo (n=110)	p-value	
Male/Female	80/25	79/21	0.76	
Age (yr)	61 <u>+</u> 11.3	61.1 <u>+</u> 11.5	0.91	
Plasma homocysteine (μmol/L)			
Baseline	11.0 <u>+</u> 3.9	10.8± 3.9	0.71	
Follow-up	7.3 <u>+</u> 2.4	9.3 <u>+</u> 3.6	< 0.001	
Minimum luminal dian	meter (mm)			
Before PTCA	0.95 ± 0.49	0.86 ± 0.47	0.16	
After PTCA	2.33 <u>+</u> 0.64	2.27 ± 0.57	0.45	
At follow-up	1.72 ± 0.76	1.45 <u>+</u> 0.88	0.02	
Degree of stenosis (%)				
Before PTCA	66.8 <u>+</u> 15.1	69.2 <u>+</u> 15.6	0.24	
After PTCA	23.6 <u>+</u> 10.1	23.4 ± 10.1	0.85	
At follow-up	39.9 <u>+</u> 20.3	48.2 <u>+</u> 28.3	0.01	

Schnyder, et al. NEJM 2001;345:1593-1600.

Effect of Homocysteine Lowering on Clinical Outcome after PTCA (12 month follow-up)

	No.(%	(0)			
Event	Folate +B ₆ +B ₁₂ (n=272)	Placebo (n=281)	Hazard Ratio (95% CI)	p-value	
Target lesion revascularizati	27(9.9)	45(16)	0.61(0.41-0.95)	0.02	
Any revascular	r 38(14)	56(19.9)	0.69(0.51-0.98)	0.04	
Nonfatal MI	7(2.6)	12(4.3)	0.57(0.27-1.42)	0.17	
Cardiac death	3(1.1)	6(2.1)	0.51(0.15-2.00)	0.23	
Any death	4(1.5)	8(2.8)	0.52(0.21-1.56)	0.17	
Any event	42(15.4)	64(22.8)	0.66(0.47-0.94)	0.01	

Schnyder, et al. JAMA 2002;288:973-979.

Clinical Trials to Assess the Effect of Homocysteine Lowering on CVD

Trial	Population	n	Intervention
Norwegian Study of Homocysteine Lowering with B-vitamins in Myocardia Infarction (NORVIT)	MI I	3000	FA(0.8mg)+B ₆ (40mg) +B ₁₂ (0.4mg)
Western Norway B Vitamin and Trial (WENBIT)	CHD	2000	FA(0.8mg)+B ₆ (40mg) +B ₁₂ (0.4mg)
Prevention with a Combined Inhibitor and Folate in Coronary Heart Disease (PACIFIC)	CAD or high risk	10000	FA(0.2 or 2mg)
Heart Outcomes Prevention Evaluation-2 (HOPE-2)	MI or high risk	5000	FA(5mg)+B ₆ (50mg) +B ₁₂ (1mg)

Clinical Trials to Assess the Effect of Homocysteine Lowering on CVD

Trial	Population	n	Intervention
Vitamin Intervention for Stroke Prevention (VISP)	Stroke	3600	$FA(2.5mg)+B_6(25mg)$ + $B_{12}(0.4mg)$ vs. $FA(0.02mg)+B_6(0.2mg)$ + $B_{12}(0.06mg)$
Women's Antioxidant and Cardiovascular Disease Study (WACS)	CAD or high risk	5449	FA(2.5mg)+B ₆ (50mg) +B ₁₂ (1mg)
Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH)	MI e	12000	FA(2mg)+B ₁₂ (1mg)
Cambridge Heart Antioxidant Study (CHAOS 2)	MI or UA	4000	FA(5mg)

B-Vitamin Atherosclerosis Intervention Trial (BVAIT)

Study Design: randomized, double-blind, placebo-controlled trial

Subjects: 490 healthy men and women ≥40 years old without preexisting CVD

Intervention: $FA(5mg)+B_6(50mg)+B_{12}(0.4mg)$ daily placebo

Follow-up: 3 years

1º outcome:

rate of change of the right distal far wall CCA IMT in computer image processed B-mode ultrasonograms obtained every 6 months

2º outcome: rate of change of coronary and aortic calcification by multirow CT detection

Conclusions

- → More than 40 epidemiological studies consistently indicate that an elevated level of plasma homocysteine is associated with cardiovascular disease.
- Arterial imaging data indicate that the risk for atherosclerosis appears to increase at a plasma homocysteine level of 8.5-9 μmol/L.
- Accumulating data indicate causality between plasma homocysteine levels and cardiovascular disease, but solid evidence will have to await completion of ongoing randomized controlled trials.