Value Assignment and Uncertainty Evaluation for Samples Used in VDSP Interlaboratory and Commutability Studies

Antonio Possolo & Blaza Toman

Statistical Engineering Division Information Technology Laboratory

November 14, 2013

VDSP Single Donor Samples ANALYTICAL PROCEDURES

- For each of 50 single donor samples of serum, and for each of three analytes:
 - Ghent did one injection per sample work-up and prepared three sample work-ups
 - NIST did two injections per sample work-up, and prepared two sample work-ups

VDSP Single Donor Samples LIMITS OF QUANTITATION

- For the concentrations of 25(OH)D₂, 25(OH)D₃, and 3-epi-25(OH)D₃:
 - Ghent: 0.6 ng mL⁻¹
 - NIST: 0.5 ng g⁻¹ for 25 samples measured by one chemist, and 1.0 ng g⁻¹ for the other 25 samples measured by another chemist

- Determinations made by NIST converted from ng g⁻¹ to ng mL⁻¹ using values of serum density measured by Ghent
- All values, from Ghent and from NIST, converted from ngmL⁻¹ to nmol L⁻¹ by multiplication by
 - 2.423 (for 25(OH)D₂)
 - 2.496 (for 25(OH)D₃ and for 3-epi-25(OH)D₃)

VDSP Single Donor Samples — Total 25(OH)D

VDSP Single Donor Samples VALUE ASSIGNMENT

- Determined by agreement between relevant parties:
 - Values of 25(OH)D₂ and 25(OH)D₃ assigned to each sample: average of averages of determinations made by Ghent and by NIST
 - Total concentration of 25(OH)D: calculated separately for each lab as sum of lab's average concentrations of 25(OH)D₂ and 25(OH)D₃

Considering also the values for $25(OH)D_2$ that were below the LoQ

 Values assigned to 3-epi-25(OH)D₃: averages of determinations made by NIST only

VDSP Single Donor Samples BIAS ASSESSMENT

- Biases estimated by differences between averages of replicated determinations of same measurand in NIST SRM 972
- None of the biases differ significantly from 0, either statistically or substantively

VDSP Single Donor Samples REFERENCE MATERIALS USED FOR CALIBRATION

 Reference materials used for calibration, quality assurance, and bias assessment all from NIST SRM 972 — uncertainties associated with reference values need to be propagated and expressed

VDSP Single Donor Samples UNCERTAINTY EVALUATION (1/2)

For each single donor sample:

- Compute averages \overline{x}_{G} and \overline{x}_{N}
- Compute associated standard uncertainties $u(\overline{x}_G) = s_G / \sqrt{n_G}$ and $u(\overline{x}_N) = s_N / \sqrt{n_N}$
- Assigned value $x = \frac{1}{2}(\overline{x}_{G} + \overline{x}_{N})$
- Uncertainty component attributable to within-laboratory dispersion of values $u_{WD}(x) = \frac{1}{2}\sqrt{u^2(\overline{x}_G) + u^2(\overline{x}_N)}$
- Corresponding number of degrees of freedom given approximately by Welch-Satterthwaite formula

VDSP Single Donor Samples UNCERTAINTY CONTRIBUTION FROM CALIBRATION

VDSP Single Donor Samples UNCERTAINTY EVALUATION (2/2)

- Component of uncertainty u_C(x) attributable to calibration obtained by interpolation from relationship between uncertainty and value for SRMs 972 and 972a
- Combined standard measurement uncertainty $u(x) = \sqrt{u_{WD}^2(x) + u_C^2(x)}$, with corresponding number of degrees of freedom ν computed using Welch-Satterthwaite formula
- Approximate 95% coverage interval for the value of the measurand is $x \pm t_{\nu,0.975}u(x)$

VDSP Single Donor Samples RESULTS

VDSP Commutability Study — 25(OH)D₃

