Nutritional Challenges for High Performance Athletics

Peter W.R. Lemon
The University of Western Ontario
Factors Affecting Dietary Needs

- exercise type/intensity/duration
- continuous vs intermittent
- rest/recovery time between sessions
- degree of adaptation (training)
- environment
- age
- gender
Nutrients Known to be Important

- energy intake

Activity & Energy Intake

Performance with/without 940kJ/d Supplement in Elite Female Rowers

Protein

- **Day 0**: 472.4
- **Day 19**: 467 *

Fat

- **Day 0**: 463.3
- **Day 19**: 461.4 *

* Bachman, Talyor, Lemon, 2000

* Lemon, 1998

* P<0.05 d0 vs d19 (n=8/treatment)
Nutrients Known to be Important

- CHO intake

Chronic CHO Intake & Performance

Bergstrom et al (1967)

- Low CHO (5% energy)
- High CHO (82% energy)

* P<0.05

Time Trial Following 50 min @ 80% Aerobic max, n=8

- Placebo
- CHO

<table>
<thead>
<tr>
<th></th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>10.9</td>
</tr>
<tr>
<td>CHO</td>
<td>10.2</td>
</tr>
</tbody>
</table>

6.4% faster

* P<0.05
Nutrients Known to be Important

- fluid intake

Performance time (min)

Low Fluid Vol (200 ± 10 ml)

Large Fluid Vol (1330 ± 60 ml)

* P<0.05

*(6.5% faster)
Controversial topics

- protein
- fat
- vitamins/minerals
- creatine
- variety of others, i.e., glutamine, ribose, HMB, prohormones, ephedrine, caffeine, CLA, etc
- other questions, i.e., timing of nutrient relative to training sessions, etc
Protein?

Protein Intake & Protein Synthesis

- Sedentary Controls
- Strength Athletes

0.9 1.4 2.4

Whole Body Protein Synthesis (mg/kg/h)

0 50 100 150 200 250

Protein Intake (g/kg/d)

*T P<0.05

Tarnopolosky et al (1992)
Post-ex Amino Acids Ingestion increases protein synthesis!

Muscle Protein Synthesis

(nmol ⋅ min⁻¹ ⋅ 100 ml leg volume⁻¹)

 - \(*P<0.05\)
 - \(\uparrow\) SE

- **500 ml Drink**
 - (6 g indispensable aa + 35 g sucrose)

- (>3 X increase)

Post Exercise Time (h)

- 0-1
- 1-2
- 2-3
- 3-4
Effects on Strength & Size? - yes

Leg Cross-sectional Area (cm^2)

- Pre-training
- Post 12 wk training
- SD

Esmarch et al (2001)
unlike letters P<0.01
SUPP = 420 kJ; 10 g CHO, 7 g PRO, 3.3 g FAT

5-repetition max (kg)

- Supplement (immediate)
- Supplement (2h post)
unlike letters P<0.05
Supp = 420 kJ, 10 g PRO, 7 g CHO, 3.3 g FAT

Esmarch et al (2001)
Creatine and protein may enhance muscle strength/size gains with training!

Leg Press Endurance - Reps at 80% of 1-RM

- **Pre**
 - Protein+CR: 10.0
 - Protein: 7.7
 - CR: 11.9
- **Post**
 - Protein+CR: 40.0
 - Protein: 23.9
 - CR: 29.8

Whole Body Lean Mass (kg)

- **Pre**
 - Protein+CR: 68.1
 - Protein: 66.4
 - CR: 69.0
- **Post**
 - Protein+CR: 70.8
 - Protein: 67.6
 - CR: 70.7

P<0.05 mean±SD
Beneficial for aged, muscle disease, etc?

Fractional Myofibrillar Protein Synthesis (% /h X 10000) following 3 months of training

- SE
- P<0.01 Older vs Younger

Age (years)
Challenge(s)?

- several
 - athletes: what product(s) to take?
 - scientists: provide the objective data to clarify picture
 - but traditional funding inadequate!
 - industry: credibility
 - regulators: quality control, safety

- solutions ????
 - partnership - science and industry (% of sales)
 - benefits ????
 - equip more laboratories
 - unbiased data collection; more speculative research
 - answers, new product ideas, and enhance credibility/
 marketability of products by verifying applicability of
 theory