

Michael N. Liebman, PhD Chief Scientific Officer Windber Research Institute

Overview

- Clinical Breast Care Project (CBCP)
- * Windber Research Institute
- * Data, Information and Knowledge
- * Systems Biology
- * Defining Translational Research
- Understanding the Question(s)

Clinical Breast Care Project

- * Creation of CBCP reference database
 - 10,000 breast disease patients/year
 - Ethnic diversity; "transient
 - Equal access to health care for breast disease
 - All acquired under SINGLE PROTOCOL
 - All reviewed by a SINGLE PATHOLOGIST
 - Tissue, serum, lymph nodes (>14,000 samples)
 - patient data (500+data fields)
 - mammograms, 4d-ultrasound, PET/CT, 3T MRI
 - complementary genomics and proteomics, IHC
 - Breast cancer vaccine program (her2/neu)

Windber Research Institute

- * Founded in 2001, 501(c) (3) corporation
- * Genomic, proteomic and informatics collaboration with WRAMC
- * 45 scientists (8 biomedical informaticians)
- * 36,000 sq ft facility under construction
- * Focus on Women's Health, Cardiovascular Disease, Processes of Aging

WRI's Mission

WRI intends to be a catalyst in the creation of the "next-generation" of medicine, integrating basic and clinical research with an emphasis on improving patient care and the quality of life for the patient and their family.

Systems Biology (Personalized Medicine)

Bottom Up Approach Patient Physiology Metab-???? **CGH** Genomics **Proteomics** olomics

Top Down Approach (Personalized Disease) **Patient** Physiology Metab-**CGH** Genomics **Proteomics** olomics

Translational Medicine

"Discovery consists in seeing what Everyone else has seen and thinking What no one else has thought"

A. Szent-Gyorgi

- * Disease as a State vs Disease as a Process
- Bias of Perspective
- * Temporal Perspective

Modeling Disease

{Risk(s)}

{Disease(s)}

Lifestyle + Environment = F(t)

|←Genotype→| ←

Phenotype

(SNP's, Expression Data)

(Clinical History and Data)

UMLS Semantic Network

Pathway of Disease

Phenotype

Longitudinal Interactions in Breast Cancer

- Identify Environmental Factors
- Quantify Exposure
 - When?
 - How Long?
 - How Much?
- * Extract Dosing Model
- Compare with Stages of Biological Development

Lifestyle Factors

2. Genetics and Disease

- Genetic Pre-Disposition
 - < 10 % of all breast cancers
 - Not all BRCA1 and BRCA2 mutations result in breast cancer
 - Modifier genes?
 - Lifestyle or environmental factors?
 - Pedigree Analysis

Pedigree (modified)

3. Aging and Disease

- * Processes of Aging vs Disease Processes
- Ongoing Breast Development
- * Same Disease: Different Host?
- Text Data-mining Approaches

Disease vs Aging

Quality of Life

Breast Development **Cumulative Development** Lactation Menopause Menarche Peri-menopause Child-bearing

Ontology: Breast Development

Terminal Buds

Human Mouse?

NulliParous

SPSS - LexiMine and Clementine

Puberty:

- Two hormones <u>estrogen and progesterone signal the</u> <u>development</u> of the glandular breast tissue.
- In female <u>estrogen acts on mesenchymal cells</u> to stimulate further development.
- The gland increases in size due to deposition of interlobular fat.
- The ducts extend and branch into the expanding stroma.
- The <u>epithelial cell proliferation</u> and <u>basement membrane</u> remodeling is controlled by interactions between the epithelium and the intra-lobular <u>hormone sensitive zone of fibroblasts</u>.
- The smallest ducts, the intra-lobular ducts, end in the <u>epithelial buds</u> which are the <u>prospective secretory alveoli</u>.
- Breast ducts begin to grow and this growth continues until menstruation begins.

Reality of Disease

DNA RNA Amino Acids
Genes

Proteins

Enzymes Substrates Co-Factors

Pathways

Tissues Cells Organelles

Processes: Tissue generation; Inflammation.

Physiological Systems

Physiological Development (time)

Gene Ontology

Poisease Hime)

4. Stratifying Disease

- * Tumor Staging
- * T,M,N tumor scoring
- Analysis of Outcomes

Cancer Progression

Tumor Progression

Tumor Staging

```
Stage 0
(Tis, N0, M0)
Stage I
(T1, *N0, M0); [*T1 includes T1mic]
Stage IIA
(T0, N1, M0); (T1,* N1,** M0); (T2, N0, M0) [*T1 includes T1mic]
[**The prognosis of patients with pN1a disease is similar to that of patients
with pN0 disease]
Stage IIB
(T2, N1, M0); (T3, N0, M0)
Stage IIIA
    (T0, N2, M0); (T1,* N2, M0); (T2, N2, M0); (T3, N1, M0); (T3, N2, M0)
    [*T1 includes T1mic]
Stage IIIB
                                               Stage IIIC
                                                                        10/10/02
(T4, Any N, M0); (Any T, N3, M0)
                                               (Any T, N3, Any M)
Stage IV
```

(Any T, Any N, M1)

(T, M, N) Information Content

Data Integration

- * Data Warehouse Model
 - Teradata → Oracle
- * Cimarron's Scierra LIMS
 - Amersham LWS
- Creation of CLWS

A Patient is:

Modular Data Model

- * Socio-demographics(SD)
- Reproductive History(RH)
- Family History (FH)
- Lifestyle/exposures (LE)
- Clinical history (CH)
- * Pathology report (P)

- * Tissue/sample repository (T/S)
- Outcomes (O)
- * Genomics (G)
- * Biomarkers (B)
- Co-morbidities (C)
- Proteomics (Pr)

Swappable based on Disease

Conclusions

- Personalized Disease will improve Patient Care, Today; Personalized Medicine, Tomorrow
- * Disease is a Process, not a State
- * Translational Medicine must be both:
 - Bedside-to-bench, and
 - Bench-to-bedside
- * The processes of aging are critical:
 - For accurate diagnosis of the patient
 - For converting breast cancer to a chronic disease

Acknowledgements

- * Windber Research Institute
- Joyce Murtha Breast Care Center
- Walter Reed Army Medical Center
- Immunology Research Center
- Malcolm Grow Medical Center
- Landstuhl Medical Center
- Henry Jackson Foundation
- * USUHS
- * MRMC-TATRC
- Military Cancer Institute

Patients, Personnel and Family!

