Antiretroviral Therapy and Mitochondria Dysfunction: A Role for Carnitine

Mariana Gerschenson, Ph.D., Director
Molecular Medicine and Infect. Diseases Laboratory
Hawaii AIDS Clinical Research Program
Departments of Medicine and Cell and Molecular Biology
Adults and Children Estimated to be Living with HIV/AIDS in 2003

Total: 34 – 46 million
2003 Global HIV/AIDS estimates for adults and children

- People living with HIV/AIDS: 40 million (34-46 million)
- New HIV infections in 2003: 5 million (4.2-5.8 million)
- Deaths due to HIV/AIDS in 2003: 3 million (2.5-3.5 million)
Anti-HIV Drugs

NRTI
Zidovudine (AZT), Lamivudine (3TC), Didanosine (DDI), Stavudine (D4T), Zalcitabine (DDC)

NNRTI
Nevirapine, Delavirdine, Efavirenz

PI
Saquinavir, Ritonavir, Indinavir, Nelfinavir
NRTIs used to treat HIV–Infected Patients

1. 3'-Azido-3'-deoxythymidine
 - **NAME**: 3'-Azido-3'-deoxythymidine
 - **SYN**: AZT; Azidothymidine; Zidovudine; Retrovir; ZDV
 - **COMP**: GLAXO WELLCOME

2. cis-1-[2'-Hydroxymethyl-5'-[1,3-oxathiol-2'-yl]]cytosine
 - **NAME**: cis-1-[2'-Hydroxymethyl-5'-[1,3-oxathiol-2'-yl]]cytosine
 - **SYN**: 2'-BCH-186; dTIC; 3TC; Lamivudine; Epivir; L-(-)-S-DDC
 - **COMP**: IAF BIOCHEM INT/GLAXO WELLCOME

3. 2',3'-Dideoxyinosine
 - **NAME**: 2',3'-Dideoxyinosine
 - **SYN**: ddI; ddI; ddino; Didanosine; Videx
 - **COMP**: BRISTOL-MYERS SQUIBB

4. Thymidine, 2',3'-dideoxy-2',3'-decty.
 - **NAME**: Thymidine, 2',3'-dideoxy-2',3'-decty.
 - **SYN**: dT; dTid; dddT; dT; Stavudine; Zerit
 - **COMP**: BRISTOL-MYERS SQUIBB

5. 2',3'-Dideoxycytidine
 - **NAME**: 2',3'-Dideoxycytidine
 - **SYN**: dDC; dDCYD; Zidovudine; Hivid
 - **COMP**: HOFFMAN. LA ROCHE

6. Butanolic acid, compd. with (1S-cis)-5'-[2-amino-6-(cyclopropylamino)-9H-purine-9-y]-2-cyclopentene-4-methanol (1:1)
 - **NAME**: Butanolic acid, compd. with (1S-cis)-5'-[2-amino-6-(cyclopropylamino)-9H-purine-9-y]-2-cyclopentene-4-methanol (1:1)
 - **SYN**: Abacavir; 1592U99 succinate; Zigen
 - **COMP**: GLAXO WELLCOME
Multi-Hit Effects of HIV, ART, and Cytokines on Mitochondria

- DNA polymerase-γ
- Uncoupling
- Transport
- Oxidative Stress
- Apoptosis
- Phosphorylation
- Proteolytic Processing
- Glycosylation

Antiretroviral Drugs Cause Mitochondrial Dysfunction in HIV Patients

- Lipodystrophy
- Neuropathies
- Hepatic Steatosis
- Myopathy
- Pancreatitis
- Lactic Acidosis
Long Term AZT Exposure Leads to Skeletal Myopathies

• The myopathy presents with fatigue, myalgia, muscle weakness, wasting, elevated serum creatine kinase, and high lactate/pyruvate ratio in the blood.
• In skeletal muscle biopsies, there are ‘ragged red fibres’ and an accumulation of fat intracellularly.
• Biochemical studies have shown decreases in Complex IV activity, carnitine levels, and mtDNA.
Mitochondrial Genotoxic and Functional Consequences of Antiretroviral Drug Therapy

GENOTOXICITY
- The antiviral nucleoside analog is phosphorylated and incorporated into mtDNA.
- MtDNA replication is truncated.

FUNCTIONAL CONSEQUENCES
- Altered mitochondrial morphology
- OXPHOS enzymology is affected
- MtDNA Depletion/ Degradation
Non-human primate transplacental studies with antiretrovirals

- NRTIs are incorporated into fetal mtDNA.
- Fetal heart, skeletal muscle, cerebellum, cerebrum, and placental mtDNA depletion and degradation.
- All organs have decreases in Complex I and IV activities and increases in Complex II.
- Mitochondrial DNA morphology by electron microscopy is aberrant.

Adult *Erythrocebus patas* Monkeys Given Oral Stavudine (D4T)

3 mg D4T twice daily for 80 days (about 1.2 mg D4T/kg bw/day = human equivalent dose).

Liver and Quadricep Muscle
- Isolate Mitochondria
- Analyze OXPHOS Enzyme Activities
- Southern and Slot Blot Analysis of MtDNA
Blood clinical chemistry values* for unexposed and pre-and post-d4T exposed patas monkeys (n=3 per group)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Pre-D4T</th>
<th>Post-D4T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactic Acid (mmol/l)</td>
<td>2.24 (1.35-3.73)</td>
<td>2.75 (1.31-4.67)</td>
<td>3.91 (1.55-8.02)</td>
</tr>
<tr>
<td>Alkaline Phosphatase U/l</td>
<td>165 (119-207)</td>
<td>121 (87-168)</td>
<td>109 (80-126)</td>
</tr>
<tr>
<td>Phosphorus mg/dl</td>
<td>3.8 (2.7-5.3)</td>
<td>4.9 (4.1-5.4)</td>
<td>2.1 (1.8-2.3)</td>
</tr>
<tr>
<td>Creatine Phosphokinase U/l</td>
<td>435 (351-479)</td>
<td>399 (270-608)</td>
<td>310 (231-430)</td>
</tr>
<tr>
<td>Lipase U/l</td>
<td>108 (68-130)</td>
<td>72 (34-141)</td>
<td>62 (49-82)</td>
</tr>
<tr>
<td>Cholesterol mg/d</td>
<td>121 (103-138)</td>
<td>101 (85-116)</td>
<td>89 (80-94)</td>
</tr>
</tbody>
</table>

*Values are represented as the mean (range in parenthesis) for 3 animals. Statistical significance between d4T-exposed and unexposed animals is indicated by bold text.
Stavudine Causes MtDNA Depletion in the Liver

![Graph showing mtDNA depletion in skeletal muscle and liver with and without d4T treatment.](image-url)

- **Skeletal Muscle**
 - 0: 0.5 fmol mtDNA/mg mt protein
 - d4T: 0.3 fmol mtDNA/mg mt protein

- **Liver**
 - 0: 6.0 fmol mtDNA/mg mt protein
 - d4T: 1.5 fmol mtDNA/mg mt protein

Significant difference between 0 and d4T treatments.
OXPHOS Enzyme Specific Activities are Altered in Skeletal Muscle and Liver of Adult Patas Monkeys Given d4T

Complex I* Complex II* Complex IV*

*Significant (p ≤ 0.05) in comparison with unexposed monkeys.

HIV-Lipodystrophy

- 20-50% of HIV-Patients taking NRTIs +/- PI develop the phenotype within the first year
- Accumulation of visceral fat and loss of subcutaneous fat
- Insulin resistance
- Hypertriglycerideridemia
Examples of Lipoatrophy
Examples of Fat Accumulation
How do we diagnose it?

• Self report
• More objective?
 – Anthropometry
 – Bioelectrical impedance analysis (BIA)
 – CT scan, MRI, DEXA
• No easy and reliable method
• Reasonable to look at old photos and log of anthropometric measures
HIV-Lipoatrophy and Mitochondria

• Human subcutaneous adipocytes from HIV-infected patients taking antiretroviral therapy have:
 – decreased mtDNA
 – increased UCP1, fatty acid transport and binding protein, IL-6, and CD45
 – decreased UCP2 and 3, PPAR-γ, PGC-1, lipoprotein lipase, acyl coenzyme A synthase, and glucose transport protein 4
 – increased apoptosis
HIV Lipoatrophy is Associated with Mitochondrial DNA Depletion in Subcutaneous Fat

<table>
<thead>
<tr>
<th></th>
<th>HIV (-)</th>
<th>HIV (+) Naive</th>
<th>HIV (+), No Lipodystrophy</th>
<th>HIV (+) Lipoatrophic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thigh</td>
<td>435 ± 63 N=4</td>
<td>489 ± 100 N=5</td>
<td>267 ± 136 N=6</td>
<td>255 ± 124 N=6</td>
</tr>
<tr>
<td>Abdomen</td>
<td>790 ± 292 N=5</td>
<td>545 ± 190 N=5</td>
<td>335 ± 158 N=6</td>
<td>244 ± 148 N=7</td>
</tr>
<tr>
<td>Neck</td>
<td>976 ± 292 N=6</td>
<td>676 ± 271 N=5</td>
<td>396 ± 249 N=6</td>
<td>205 ± 78 N=7</td>
</tr>
<tr>
<td>PBMC</td>
<td>201 ± 62 N=10</td>
<td>105 ± 48 N=3</td>
<td>157 ± 49 N=7</td>
<td>148 ± 53 N=7</td>
</tr>
</tbody>
</table>

All values are represented as mtDNA copies/cell (X ± SD) and statistical significance is p ≤ 0.05. Bold green text indicates statistical significance compared to HIV (-) and HIV (+) Naïve. Bold blue text indicates statistical significance against HIV(-). Thigh fat mtDNA copies/cell (red) is statistically decreased compared to abdomen and neck (Gerschenson et al. 11th Conference on Retroviruses and Opportunistic Infections, pg. 328, 2004).
Conclusions

• HIV lipoatrophy is associated with mitochondrial DNA depletion in different subcutaneous fat depots.
• Neck and abdomen fat has increased mtDNA copies/cell compared to the thigh.
• PBMC mtDNA copies/cell did not correlate with lipoatrophy.

This research was supported by the National Institutes of Health (MD-000173, RR-14607, RR-03061), USA.
Potential Therapies for Lipodystrophy

• Testosterone – increases lean muscle mass (? Fat), may be beneficial to patients with visceral adiposity and hypogonadism
• Metformin – appears safe, but improvements in peripheral fat loss not seen
• Thiazolidinediones – inconsistent results from different studies
• Diet / exercise
• Niaspan – our local study did not show any obvious trends
• Switch
• Acetyl-L-carnitine
Acetyl-L-Carnitine Studies for HIV-Lipodystrophy

• 1000 mg/day for 3 months in 12 patients resulted in a decrease in serum cholesterol, S. Mauss, *HIV Medicine* (2001), 2: 59-60

• 3000 mg/day for 9 months in 16 patients decreased serum triglycerides, M. Loignon, *AIDS*, 15:1194-5
Pioglitazone in combination with Vitamin and Mitochondrial Co-factors for the Treatment of HAART-associated Lipoatrophy

University of Hawaii IRB Approval for Version 2 on 01/09/04
DSMB met on 02/17/04
Objectives for Intervention

Primary Objective:

◆ Efficacy is defined as 60% or more of subjects on an intervention for 24 weeks show 7% or greater increase in total peripheral subcutaneous fat as assessed by DEXA.
Objectives for Intervention

Secondary Objectives:

- To correlate changes in visceral fat with changes in peripheral fat content
- To correlate changes in hepatocellular fat with changes in peripheral fat content
- To correlate changes in blood metabolic parameters with changes in peripheral fat content
- To explore the pathophysiologic mechanisms underlying lipoatrophy in subcutaneous adipose tissue
Assessment and Procedures in Study

• Whole body DEXA for the assessment of peripheral (arms and legs) of subcutaneous fat content
• Abdominal 8-slice CT scan for the assessment of visceral fat and hepatocellular fat contents
• Thigh skin punch biopsy for subcutaneous fat to assess mitochondrial and lipid metabolism in the tissue of interest
• Fasting blood analysis of various metabolic parameters
Drugs Used in Study

<table>
<thead>
<tr>
<th>Drug</th>
<th>Amount/day (mg)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiamine (Vitamin B<sub>1</sub>)</td>
<td>100</td>
<td>Coenzyme of pyruvate dehydrogenase</td>
</tr>
<tr>
<td>Riboflavin (Vitamin B<sub>2</sub>)</td>
<td>50</td>
<td>A precursor of flavin adenine dinucleotide (FAD)</td>
</tr>
<tr>
<td>Acetyl-L-carnitine</td>
<td>1000</td>
<td>Transport fatty acids</td>
</tr>
<tr>
<td>Coenzyme Q<sub>10</sub></td>
<td>200</td>
<td>Cofactor for OXPHOS</td>
</tr>
<tr>
<td>Niaspan</td>
<td>1000</td>
<td>Inhibiting the release of FFA from adipose tissue and increasing lipoprotein lipase activity</td>
</tr>
<tr>
<td>Pioglitazone</td>
<td>30</td>
<td>Promotes subcutaneous adipocyte proliferation</td>
</tr>
</tbody>
</table>
Study Design

Study Regimen

<table>
<thead>
<tr>
<th>Study Regimen</th>
<th>24 wks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin B1 (Thiamine) 100 mg; Vitamin B2 (Riboflavin) 50 mg; Acetyl-L-carnitine 1 gm; Coenzyme Q10 200 mg</td>
<td>qd</td>
</tr>
<tr>
<td>Pioglitazone 30 mg</td>
<td>qd</td>
</tr>
<tr>
<td>Dose Titration</td>
<td>Niaspan 500 mg qd Niaspan 1000 mg qd</td>
</tr>
<tr>
<td>Screening Visit</td>
<td>Wk 2 visit Wk 4 visit Wk 6 visit Wk 8 visit: Fasting lipids Fasting Insulin/glucose FFA Lactate Oxidative Biomarkers Wk 12 visit Wk 16 visit Wk 24 visit Fat biopsy DEXA CT Abd Fasting lipids Fasting Insulin/glucose FFA Lactate Oxidative Biomarkers</td>
</tr>
<tr>
<td>Entry Visit</td>
<td>Fat biopsy DEXA CT Abd Fasting lipids Fasting Insulin/glucose FFA Lactate Oxidative Biomarkers</td>
</tr>
<tr>
<td>Screening Visit</td>
<td>Wk 2 visit Wk 4 visit Wk 6 visit Wk 8 visit: Fasting lipids Fasting Insulin/glucose FFA Lactate Oxidative Biomarkers Wk 12 visit Wk 16 visit Wk 24 visit Fat biopsy DEXA CT Abd Fasting lipids Fasting Insulin/glucose FFA Lactate Oxidative Biomarkers</td>
</tr>
</tbody>
</table>
Enrollment Status

- Began enrolling in April, 2003.
- 10 subjects on drug arm.
- 3 subjects completed study and four will finish in April, 2004.
- 3 subjects off study due to adverse event not related to medications, change in antiretroviral therapy, difficulty with tolerating flushing secondary to Niaspan.
Patient Characteristics

- All males
- Self-reported peripheral fat wasting following initiation of NRTI-containing HAART (ZDV, D4T, or DDI)
- 2 Asian Pacific Islanders, 1 Hispanic, and 4 Caucasian
- Mean age: 52.6 ± 8.6
- CD4: 420 ± 252
Preliminary Data

• There are no changes from baseline to week 8 or week 24 in:
 – Peripheral fat in arm, legs, and trunk by DEXA analysis
 – BMI
 – Creatinine
 – Glucose
 – Insulin
 – Triglyceride
Mitochondrial Interventions Decrease ALT and Lactic acid

<table>
<thead>
<tr>
<th>Week</th>
<th>0 (n=7)</th>
<th>8 (n=7)</th>
<th>12 (n=3)</th>
<th>16 (n=3)</th>
<th>24 (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (IU/L)</td>
<td>32 ± 18</td>
<td>28 ± 20</td>
<td>21 ± 11*</td>
<td>50 ± 53</td>
<td>27 ± 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P= 0.03</td>
<td>P= 0.16</td>
</tr>
<tr>
<td>Lactic acid (mmol/L)</td>
<td>2.2 + 1.5</td>
<td>1.5 + 0.7</td>
<td>N/A</td>
<td>N/A</td>
<td>1.6 + 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P= 0.05</td>
<td></td>
</tr>
</tbody>
</table>

* Statistical significance as measured by paired t-test.
Conclusions

• The preliminary clinical chemistry data suggests that this intervention may be affecting mitochondrial metabolism

• Future research will include gene expression studies of mitochondrial and nuclear genes
Future Clinical Acetyl-L-Carnitine Studies

• Acetyl-L-Carnitine for the Treatment of HAART-associated Lipoatrophy
• An Open-Label, Dose Escalation Pilot Study of Acetyl-L-Carnitine for the Treatment of Dideoxynucleoside-Associated Distal Symmetric Peripheral Neuropathy
Acknowledgements

Hawaii AIDS Clinical Research Program Patients, Volunteers, and Staff
Acknowledgements to NIH for Extramural Funding

- P20 MD000173 - M. Gerschenson and C. M. Shikuma
- U54 NS43049 - M. Gerschenson and C. M. Shikuma
- U01 AI34853 - M. Gerschenson and C. M. Shikuma
- U01 AA013566 - M. Gerschenson
- R01 NS40302 - M. Gerschenson
- G12 RR-14607 - C. M. Shikuma
- G12 RR-03061 - C. M. Shikuma
Leahi Hospital at the University of Hawaii
Photo:
Bruce Shiramizu, M.D.
Duy Trans
Brain Seavy
Daniel LiButti
Mariana Gerschenson, Ph.D.
Cecilia Shikuma, M.D.

Not in photo:
Lori Kamemoto, M.D.
Larry Day, M.D.
Franchette Pasqual
Jennifer Lloyd
Kimber Cochrane
In press:

Special Journal Issues in *Mitochondrion* on:

‘Mitochondrial Medicine’, Editor: Robert Naviaux

‘Mitochondria, HIV, and Antiretrovirals’, Editor: Mariana Gerschenson