Carnitine: The Science Behind an Essential Nutrient

GELTRUDE MINGRONE, MD, PHD
CATHOLIC UNIVERSITY, ROME, ITALY
MITOCHONDRIAL DIABETES \implies 1-2% of all cases of DM

- Impaired glucose-induced insulin secretion
- Reduced oxidative phosphorylation (reduced O_2 consumption)

Wollheim CB, Diabetologia 2000
Genes:
- Complex I (NADH dehydrogenase)
- Complex III (Ubiquinol: Cytochrome c oxidoreductase)
- Complex IV (Cytochrome c oxidase)
- Complex V (ATP synthase)

Transfer RNAs
Ribosomal RNAs
Mutations associated with diabetes
CaCa^{2+} \rightarrow PHOSPHOLIPIDS \rightarrow DAG

\textit{Protein kinase A} \rightarrow INS

\textbf{GLUCOSE}

\textbf{GLUT2} \rightarrow GLUCOSE

\textbf{GLUCOSE KINASE} \rightarrow GLUCOSE-6P

\textbf{ATP} \rightarrow PYRUVATE

\textbf{GLYCEROL-P} \rightarrow FATTY ACYL-CoA

\textbf{INS} \rightarrow DAG

\textbf{MALONYL-CoA} \rightarrow ACETYLC-CoA

\textbf{ACETYLC-CoA} \rightarrow ACETYL-CoA

\textbf{ACETYL-CoA} \rightarrow CITRATE

\textbf{Ca^{2+}} \rightarrow ACETYL-CoA CARBOXYLASE

\textbf{OAA} \rightarrow ATP-CITRATE LYASE

\textbf{ATP} \rightarrow K^{+}
A cellular model of MODY3 expressing dominant-negative Hepatic Nuclear F-1α also displayed deletion of glucose-induced insulin secretion

Wang H, EMBO J 1998

The question is whether a mitochondrial dysfunction might be a co-factor in the development of type 2 DM
A 80% increase of the intramyocellular lipid content was observed in lean, insulin-resistant offspring of patients with type 2 diabetes compared with age and weight matched controls. These results support the hypothesis that insulin resistance is associated with a defect of muscle fatty acid oxidation.

Mitochondrial CACT concentration was decreased and carnitine-carnitine and acylcarnitine-carnitine exchange rates were significantly lower in IR subjects (n =19) than in controls (n = 11). The activity of other components of the mitochondrial carnitine system (i.e., carnitine palmitoyl transferase-I and II) was unchanged.

Our data suggest that by restraining entry of FA-coenzyme A into mitochondria, low CACT levels increase cytosolic FA levels and their incorporation into glycerolipids. The low level of CACT in IR muscle may contribute to the elevated muscle concentrations of triglycerides, diacylglycerol, and FA-coenzyme A characteristic of IR muscle.

Peluso G et al. Front Biosci. 2002;7:109-16
GLUCOSE

INSULIN

Insulin Receptor

IRS-1

p110PI3K

p85αPI3K

Hexokinase II

Glut 4

Glycogen Synthase

Glycogen

Glucose 6-P

Fatty Acids

UCP2

UCP3

Malonyl-CoA

Acetyl-CoA

ACC

SREBP1c

RNA Pol II

Cholesterol, Triglycerides

Metabolism Genes

Mingrone G et al Obes Res. 2003;11:632-40
Rosa G et al Obes Res. 2003;11:176-82
Mingroner et al Int J Obes Relat Metab Disord. 2002;26:1165-72
Greco et al Diabetes. 1999;48:1258-63
POST-BPD

Greco et al., Diabetes. 2002;51:144-51.
EUGLYCEMIC HYPERINSULINEMIC CLAMP

M (µmol/kg/min)

Pre-BPD Post-BPD Pre-Diet Post-Diet

LINEAR CORRELATION

Intramyocytic TG (a.u.)

M (mg/kg/min)
Blue diamonds = RY-GB
Red dots = BPD
• Ferranni et al (Am J Physiol 1988) showed that L-carnitine increases non-oxidative glucose disposal by 50% in healthy volunteers.
• Capaldo et al. (Diab Res Clin Pract 1991) showed the same effect in type 2 diabetic patients.

• De Gaetano et al (Am Coll Nutr 1999) demonstrated a significant increase of both insulin sensitivity and glucose effectiveness in healthy volunteers after an i.v. bolus of L-carnitine.
• Mingrone et al (Am Coll Nutr 1999) showed in type 2 diabetic patients an increase of both glucose oxidation and non-oxidative glucose disposal.
Anthropometric Characteristics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Subjects</td>
<td>18</td>
</tr>
<tr>
<td>Sex</td>
<td>8M/10F</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>52.3 ± 12</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>78.28 ± 15.8</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>168 ± 12</td>
</tr>
<tr>
<td>BMI (kg* m⁻²)</td>
<td>27.46 ± 4.89</td>
</tr>
<tr>
<td>Fat Free Mass (kg)</td>
<td>57.63 ± 11.1</td>
</tr>
<tr>
<td>Fat Mass (kg)</td>
<td>20 ± 6.75</td>
</tr>
<tr>
<td>EE (kJ/24h) during saline infusion</td>
<td>6794.6 ± 1298</td>
</tr>
<tr>
<td>EE (kJ/24h) during ALC infusion</td>
<td>6810.8 ± 767</td>
</tr>
<tr>
<td>Fasting RQ during saline infusion</td>
<td>0.83 ± 0.04</td>
</tr>
<tr>
<td>Fasting RQ during ALC infusion</td>
<td>0.83 ± 0.02</td>
</tr>
</tbody>
</table>
The studied sample consisted of 18 type 2 diabetic patients.

Patients were assigned randomly to the three active doses of Acetyl-L-Carnitine (ALC) by having 18 shuffled couples of drug vials marked by a progressive number and Day1/Day2 (double-blind with respect to both patient and physician conducting the experiment, both for dosage and for order active/placebo).
Methods

- Body composition (DXA)
- Indirect calorimetry
- Euglycemic Hyperinsulinemic Clamp (EHC)
Body composition was measured by DXA Fat-Free Mass (FFM) and Fat Mass (FM) were computed.

Respiratory gas exchange was measured by an open-circuit ventilated-hood system and energy expenditure, respiratory quotient and substrate oxidation rate were calculated from O_2 consumption, CO_2 production, and N_2 urinary excretion.
Analysis of variance for repeated measures was performed on whole body glucose uptake (M) at end-clamp, end-clamp insulinemia (I), their ratio (M/I), end-clamp glucose storage (GST = M – End-clamp Glucose Oxidation), using sex (M, F) and administered dosage (0.025, 0.1, 1.0 mg/kg/min) as between-subject factors, ALC versus Placebo (ALC, P) as within-subjects factor, and anthropometric indices (BMI, Fat Mass, Fat-Free Mass, Age) as covariates.
A second type of repeated-measures design was employed to investigate the effect of ALC administration on the calorimetrically obtained metabolic descriptors (Energy Expenditure EE, Respiratory Quotient RQ, Glucose Oxidation GOX, Lipid Oxidation LOX). In this way the effect of ALC on producing differences in the change of these metabolic variables, under ALC infusion at baseline and under ALC infusion in the hyperinsulinemic state, was assessed.
<table>
<thead>
<tr>
<th></th>
<th>Placebo (N=18)</th>
<th>ALC 0.025 (N = 6)</th>
<th>ALC 0.1 (N = 6)</th>
<th>ALC 1.0 (N = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (mg/kg<sub>bw</sub>/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/I (mg/kg<sub>bw</sub>/min / (µUI/ml))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose storage (mg/kg<sub>bw</sub>/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3.81±0.41</th>
<th>4.19±0.84*</th>
<th>4.44±0.56*</th>
<th>6.90±1.34**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3.64±0.60)</td>
<td>(3.98±0.90)</td>
<td>(3.80±0.74)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0382±0.0054</td>
<td>0.0460±0.013</td>
<td>0.0632±0.011</td>
<td>0.0684±0.011</td>
</tr>
<tr>
<td></td>
<td>(0.0345±0.012)</td>
<td>(0.0469±0.011)</td>
<td>(0.0333±0.004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.81±0.36</td>
<td>2.47±0.81*</td>
<td>2.08±0.62*</td>
<td>4.61±0.41**</td>
</tr>
<tr>
<td></td>
<td>(1.87±0.47)</td>
<td>(1.76±0.86)</td>
<td>(1.79±0.58)</td>
<td></td>
</tr>
</tbody>
</table>
The positive effect of ALC on glucose uptake occurred independently of the amount administered suggesting that it does not derive from the bulk delivery of acetyles to cells.

A possible explanation of this behavior would involve the modulation of gene expression (mitochondria? nucleus?), as proposed for liver and muscle cells in the mouse.

Giancaterini A, Metabolism, 2000
Roncero C & Goodridge AG. Arch Biochem Biophys 295: 258-267, 1992
Clinical data support the hypothesis that insulin resistance in the skeletal muscle of insulin-resistant offspring of patients with type 2 diabetes is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in mitochondrial oxidative phosphorylation.

It is noteworthy to verify whether or not L-carnitine and/or its esters modulate lipid metabolism or oxidative phosphorylation gene expression? PPARα, PPARγ, etc. (Petersen KF, N Engl J Med 350:664-671; 2004)
The positive effect of ALC on glucose uptake occurred independently of the amount administered suggesting that it does not derive from the bulk delivery of acetyl-CoA to cells.

A possible explanation of this behavior would involve the modulation of gene expression, as proposed for liver and muscle cells in the mouse and chick embryo hepatocytes.

Roncero C & Goodridge AG. Arch Biochem Biophys 295: 258-267, 1992