How Developmental Changes in Sleep Biology May Affect Adolescent Behavior

Mary A. Carskadon, PhD
Sleep for Science Research Lab
EP Bradley Hospital
Alpert Medical School of Brown University
Conflict of Interest

• none
Two-Process Model of Sleep Regulation (Borbély, 1982)

- Sleep propensity increases as waking accumulates and dissipates with sleep
- Sleep propensity oscillates with a daily (circadian) variation

Observed features of the clock during adolescence
Species Manifesting Juvenile Phase Delay

• Homo sapiens (humans)
• Macca mulatta (Rhesus monkeys)
• Octodon degus (degu) [some ?]
• Rattus norvegicus (laboratory rat)
• Mus musculus (laboratory mouse)
• Psammomomys obesus (fat sand rat)

Hagenauer et al., Devel Neurosci, 2009
Phase Preference in 6th Graders

A. Girls \(F(2,263) = 3.12 \ p<.05 \)

B. Boys \(F(1,175) = 3.46 \ p<.10 \)

Carskadon, Vieira & Acebo *Sleep* 1993
Chronotype and Adolescence

Roenneberg et al., *Current Biol.*, 2004
Melatonin Onset (DLMO) Phase and Puberty Stage

Carskadon et al. NYAS, 2004
Activity offset delays in pubertal Macaques

- Puberty: phase delay in the daily offset of activity
- If puberty is inhibited by zinc deprivation, the phase delay does not occur.

Golub et al., In: *Adolescent development...*, 2002
Pubertal Phase Delay in Degus

- Activity onset delays at puberty in both males and females

First preputial and vaginal openings develop at about 8-14 weeks

Hummer et al., 2007
What might underlie/support/influence a phase delay?

• Changes in light exposure
 – Staying up later // more late light
 – Waking up later // less morning light
Adolescent Self-Report

Bedtime

Risetime

Jenni & Carskadon, SRS BSG, 2005
What might underlie phase delay?

• Changes in light exposure
 – Staying up later // more late light
 – Waking up later // less morning light

• Change in phase-dependent sensitivity to light exposure
Exaggerated phase delay to light in pubertal female mice

What might underlie phase delay?

• Changes in light exposure
 – Staying up later // more late light
 – Waking up later // less morning light

• Change in phase-dependent sensitivity to light exposure

• Longer intrinsic circadian period (i.e., longer internal day length)
Longer Period = Later Phase

Hagenauer et al., *Devel Neurosci*, 2009
Intrinsic Circadian Period: Adolescents vs. Adults

Carskadon & Acebo *Sleep*, 2005
What might underlie phase delay?

• Changes in light exposure
 – Staying up later // more late light
 – Waking up later // less morning light
• Change in phase-dependent sensitivity to light exposure
• Longer intrinsic circadian period (i.e., longer internal day length)
• Diminished amplitude of the circadian rhythm
Salivary Melatonin Amplitude

Crowley et al., *Dev Psychobiol*, 2011
Circadian Rhythms Summary

• Phase is delayed during adolescent development
 – Phase preference (chronotype) is later
 – Melatonin phase is later
• Phase-dependent light sensitivity may change
• Intrinsic period in adolescents may affect phase
• Reduced amplitude of the circadian clock may dampen the signal for sleep

• Result: late nights are favored (so, too, late mornings)
Features of Adolescent Sleep-Wake Homeostasis (Human)
Sleep Homeostasis Model (Borbély 1981)
Adolescent Brain Changes

Density of neuronal connections, cerebral metabolic rate, and brain wave amplitude decline during adolescence

Feinberg et al., *J Theor Biol.*, 1990
The “look” of sleep changes

Tanner 1 (Age = 10)
Stage 2
Stage 4
REM

Tanner 5 (Age = 15)
Stage 2
Stage 4
REM

Slow Wave Sleep & Slow Wave Activity

Tanner 1 (12.3 years)

Tanner 5 (14.5 years)

Jenni & Carskadon *Sleep*, 2004
Sleep phenomenology changes; does sleep regulation?
Sleep pressure dissipation does not change in adolescence

- SWA dissipation is unchanged across pubertal development

Jenni & Carskadon, *Sleep* 2004
Across pubertal development, SWA accumulation rate changes

Tanner Stages 1/2

Tanner Stage 5

$td = 2.8 \text{ h}$ $ti = 8.9 \text{ h}$ Decay Time Constant Rise Time Constant

$td = 2.7 \text{ h}$ $ti = 12.1 \text{ h}$

Jenni, Achermann & Carskadon *Sleep*, 2005
Sleep tendency & extended wakefulness

Taylor et al., J Sleep Res, 2005
Model of Process S in Development

Proposed developmental changes in accumulation of sleep pressure as a function of time since waking depicted for different ages. Sleep pressure accumulates more slowly during the day with increasing age.

Summary of Process S Change

• Recovery sleep process does not change across adolescence
 – Need for sleep is stable
• Accumulation of sleep pressure slows
 – Staying awake longer is easier

• Result: late nights are easier to achieve, but the same amount of sleep is needed
Adolescent Sleep Behavior

- Bedtime becomes later
- Rise time becomes earlier (school dependent)
- Total amount of sleep is reduced
- Chronic insufficient sleep has its strongest effects on sleepiness in the morning, especially if waking at an adverse circadian phase
- Evening alertness is bolstered by the clock-dependent alerting signal
When Sleep Biology and Social Systems Interact: School Start Time
MSLT in high school students

- 10th grade
- Start time = 0720
- No schedule manipulation
- Sleeping about 7 hours a night

Carskadon et al. *Sleep*, 1998
REM sleep tendency also affected

Carskadon et al. *Sleep*, 1998
Consequences of Clock/Homeostasis/Lifestyle Interaction

- Variable sleep timing
- Chronic insufficient sleep
- Deficits in mood, learning, impulse control, etc.
- Excessive sleepiness & possible caffeine use?
Caffeinated Beverage Daily

NSF Sleep in America Poll, 2006
Evening caffeinated beverages disturb sleep?

Greater sleepiness and more caffeine use?
A sampling of gaps...

- What affect do caffeinated energy drinks have on nighttime sleep?
- Do caffeinated energy drinks affect circadian rhythms?
- What is the impact of caffeinated energy drinks on alertness, performance, attention, and learning acquisition in the daytime?
- Do these beverages affect sleep-dependent learning?
Acknowledgements

Collaborators/Fellows
Ron Seifer, PhD
Christine Acebo, PhD
Oskar G. Jenni, MD
Peter Achermann, PhD
Leila Tarokh, PhD
Eliza Van Reen, PhD
Katherine Sharkey, MD, PhD
John McGeary, PhD
Valerie Knopik, PhD
Brandy Roane, PhD
David Barker, PhD

Research Assistants
Dave Bushnell
Maggie Gordon-Fogelson
Jena Burgner
Gretchen Surhoff
Erin Campopiano
James Bass
Sharon Driscoll

Summer Research Apprentices

Lab Staff
Katie Esterline
Ellyn Ferriter
Jon Lassonde
Denise Maceroni
Caroline Gredvig-Ardito

Funding Sources
MH52415 MH01358 MH58879
AA13252 MH076969
Periodic Breathing Foundation