NOTICE

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.

Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

AVISO

Ante la falta de fondos del gobierno federal, no se actualizará este sitio web y la organización no responderá a transacciones ni consultas hasta que se aprueben los fondos.

El Centro Clínico de los Institutos Nacionales de la Salud (el hospital de investigación) permanecerá abierto. Consulte cc.nih.gov (en inglés).

Infórmese sobre el funcionamiento del gobierno federal y el reinicio de las actividades en OPM.gov.

Grant Abstract: Molecular Basis of Mammalian Manganese Homeostasis

Grant Number: 5R01DK110049-08
PI Name: Bartnikas
Project Title: Molecular Basis of Mammalian Manganese Homeostasis

Abstract: Metals are essential for human health yet potentially toxic in excess. Our understanding of metal homeostasis stems prominently from studies of inherited diseases of metal deficiency and excess. The molecular basis of manganese (Mn) homeostasis is poorly understood relative to other metals, given that inherited Mn-related diseases were only recently identified. In 2012, mutations in a metal export protein SLC30A10 were reported in patients with Mn excess, liver and neurologic disease, increased red blood cell counts, and erythropoietin excess. Mn excess was attributed to impaired biliary Mn excretion, while liver, neurologic, and hematologic defects were ascribed to Mn toxicity. Employing our expertise in mammalian metal homeostasis, we recently demonstrated that murine Slc30a10 is not only essential for systemic and biliary Mn excretion but also for Mn export by the small intestine into the lumen of the gastrointestinal tract (Mercadante et al., J Clin Invest., 2019). This indicates that the role of SLC30A10 in Mn homeostasis is more complicated than anticipated and that extrahepatic organs contribute to Mn excretion. In exploring the mechanistic basis of Mn excess in SLC30A10 deficiency, we also observed that Slc30a10-deficient mice develop paradoxically increased Mn absorption despite severe Mn excess. Our preliminary data suggest a multi-step model underlying this surprising observation. First, excess Mn aberrantly stimulates the liver to express the hormone erythropoietin. Second, erythropoietin excess indirectly suppresses expression of the hormone hepcidin, an inhibitor of dietary iron absorption. Third, hepcidin deficiency leads to increased Mn absorption. As a role for hepcidin in Mn homeostasis is not well-established, this last novel step in our model is based upon our observation that pharmacologic stimulation of hepcidin expression decreases Mn levels in Slc30a10-deficient mice . We propose that SLC30A10 deficiency is a unique pathophysiological context in which hepcidin plays an unexpected but pivotal role in development of Mn excess. The goal of this proposal is to establish the mechanistic link between hepcidin and Mn absorption in SLC30A10 deficiency and to explore pharmacologic stimulation of hepcidin expression as a treatment for Mn excess in SLC30A10 deficiency and other conditions. This will be accomplished using genetic, metabolic, pharmacologic, radioisotopic, dietary, and microscopic techniques. The proposed studies will enable us to not only further establish the molecular basis of mammalian Mn homeostasis but also to design therapeutic strategies for Mn-related diseases based upon our understanding of underlying mechanisms of Mn homeostasis. PUBLIC HEALTH RELEVANCE: Obtained from the diet, the metal manganese is essential for health yet can be toxic in excess. Our research investigates the mechanisms by which manganese levels are regulated in the body. Our studies will enable us to better identify those at risk of manganese-related disease and treat those affected by such diseases.

Back to Grants Page